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Abstract
The ordering of the one-dimensional Heisenberg spin glass interacting via
the long-range power-law interaction is studied by Monte Carlo simulations.
Particular attention is paid to the possible occurrence of ‘spin–chirality
decoupling’ for appropriate values of the power-law exponent σ . Our result
suggests that, for intermediate values of σ , the chiral-glass order occurs at
finite temperatures while the standard spin-glass order occurs only at zero
temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In order to understand the true nature of the experimental spin glass (SG) transition, particularly
of canonical SGs which possess nearly isotopic interaction, it is crucially important to elucidate
the ordering properties of the three-dimensional (3D) isotropic Heisenberg SG. Some time
ago, one of the present authors (HK) proposed that the 3D isotropic Heisenberg SG might
exhibit an intriguing ‘spin–chirality decoupling’ phenomenon at long length and time scales,
i.e., the ordering of the chirality occurred at a temperature higher than the standard SG transition
temperature. Chirality is a multispin variable representing the sense or the handedness of the
noncoplanar spin structure induced by spin frustration. It was suggested that such a spin–
chirality decoupling might play a crucial role in the experimental SG ordering [1, 2].

Concerning the possible occurrence of such spin–chirality decoupling in the 3D
Heisenberg SG, however, controversy has continued for some time now. Different numerical
simulations by different authors reported apparently opposite conclusions [3–11]. Difficulty
in finite-size numerical simulations might lie in the fact that, as emphasized in [4], the spin–
chirality decoupling, if any, is realized only at longer length scales beyond a crossover length
L∗, so that one needs to go beyond this crossover length in order to really see whether spin–
chirality decoupling occurs or not.
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To understand the issue in a wider perspective, it might be useful to study the phenomena
by generalizing the dimensionality d from the original d = 3 to both lower and higher
dimensions. In the limit of high dimension d → ∞, the model reduces to the mean-field (MF)
Heisenberg SG model. In the MF limit, it has been known that there is a single SG transition
at a finite temperature: there, the order parameter of the transition is the spin, not the chirality,
i.e., there is no occurrence of spin–chirality decoupling. In d = 1 dimension, on the other
hand, it has been known that the short-range Heisenberg SG exhibits only a T = 0 transition
both in the spin and in the chirality. Thus, the chiral-glass phase, if any, arises in intermediate
dimensions around d = 3. Indeed, numerical simulations for the Heisenberg SG in generalized
dimensions, including d = 2 [12] and d = 4, 5 and ∞ dimensions [13], have been done
recently. Though useful information was obtained from these analyses, intrinsic limitations
also exist: for example, (i) the controlling parameter d cannot be changed continuously so that
a fine-tuning of the phenomena was impossible, and (ii) in higher dimensions, thermalization
of larger systems became increasingly difficult due to the rapid increase of the total number of
spins N = Ld , L being the linear size of the lattice.

In order to shed further light on the issue from somewhat different perspective, we consider
here a different type of Heisenberg SG model, i.e., the 1D Heisenberg SG model interacting
via long-range interaction which decays with distance as a power-law with an exponent −σ .
For sufficiently small σ , the model is expected to reduce to an infinite-range MF model
corresponding to d = ∞, while, for sufficiently large σ , the model is expected to reduce
to the d = 1 model with short-range interaction. Hence, the variation of σ in the 1D power-
law SG model might mimic that of the dimensionality d of the short-range SG model. Indeed,
a recent numerical study on the corresponding 1D Ising SG model by Katzgraber and Young
supported such correspondence [14].

Of particular interest here is whether the 1D Heisenberg SG with long-range power-law
interaction exhibits spin–chirality decoupling for appropriate values of σ . In the present paper,
we study by extensive Monte Carlo simulations the nature of both the spin and the chirality
orderings of this model.

2. Model

The model we consider is the 1D classical Heisenberg model interacting via the random long-
range interaction Ji j . The Hamiltonian is given by

H = −
∑

〈i, j〉
Ji j �Si · �Si , (1)

where �Si is the three-component classical Heisenberg spin variable, �Si = (Sx
i , Sy

i , Sz
i ) with

| �Si | = 1. The interaction Ji j is assumed to obey the Gaussian distribution, decaying with
distance ri j as a power-law,

Ji j = C
εi j

rσ
i j

, C =
√

N
∑

i, j r−2σ
i j

(2)

where εi j is chosen according to the Gaussian distribution with zero mean and the standard
deviation unity:

P(εi j ) = 1√
2π

exp(−ε2
i j/2). (3)

In order to make the total energy extensive, the exponent σ should be greater than 1/2.
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We impose periodic boundary conditions by placing the spins on a ring. Then, the distance
between the i th and the j th spins ri j is given by [14]

ri j = L

π
sin

(
π |i − j |

L

)
, (4)

where L is the total number of spins.
As mentioned, for sufficiently small and large σ , the model reduces to an infinite-range

d = ∞ model and a short-range d = 1 model, respectively. In the limit of σ → ∞, in
particular, the model should reduce to the nearest-neighbour model where frustration is totally
irrelevant. Hence, one expects that spin–chirality decoupling would arise neither in the small-σ
nor large-σ limit: it could possibly arise only for intermediate values of σ . If one notes that
the dimension d = 3 probably lies close to the lower critical dimension of the SG order in
the short-range Heisenberg SG model, spin–chirality decoupling of the present 1D long-range
SG model would arise, if at all, near the borderline value of σ separating the regions of a
finite-temperature SG transition and a zero-temperature SG transition.

Thanks to its one-dimensionality, some analytical results are available for the 1D long-
range SG model [15–17]. On increasing σ from σ = 0, a finite-temperature SG transition
changes its character from a MF one to a non-MF one beyond the borderline value of σ . This
borderline value of σ , ‘lower critical σ ’, is known to be σ = 2

3 . In the range 2
3 < σ < 1, the

SG transition still takes place at a finite temperature, but is governed by the non-MF long-range
fixed point, characterized by an ‘exact’ SG critical-point decay exponent ηSG = 2 − σ . For σ

greater than the ‘upper critical σ ’, σ = 1, the SG transition occurs only at zero temperature
with an exponent ηSG = 1, which is generically expected for any zero-temperature transition
with a non-degenerate ground state.

Previous analytic work did not consider the possibility of spin–chirality decoupling [15].
If one recalls the above-mentioned σ–d analogy, spin–chirality decoupling might be expected
for the range of σ around the upper critical σ , σ = 1.

3. Monte Carlo simulations

We perform an equilibrium MC simulation of the model. The power-law exponent σ is set to
σ = 1.1, which lies in the region where we would expect spin–chirality decoupling, if any.
In our simulation, we make use of the temperature exchange MC method combined with the
standard heat-bath updating. The lattice sizes studied are L = 64, 128, 256, 512 and 1024,
where the sample average is taken over 128–512 independent bond realizations.

The local chirality χiμ at the i th site in the μ direction is defined by

χiμ = �Si+êμ
· (�Si × �Si−êμ

), (5)

êμ(μ = x, y, z) being a unit lattice vector along the μ axis.
We probe the ordering of both the chirality and the spin by looking at the associated

Binder ratios, i.e., the spin Binder ratio gSG and the chirality Binder ratio gCG, as well as
the associated finite-size correlation lengths, i.e., the spin correlation length ξSG(L) and the
chirality correlation length ξCG(L). Detailed definitions of these quantities have been given
in [4]. Both the Binder ratio g and the dimensionless finite-size correlation length ξ(L)/L
have widely been used in numerical simulations in identifying the transition point. Since both
quantities are dimensionless, the data for different size L are expected to exhibit a crossing or
a merging at a transition point.

In figure 1, we show the size and temperature dependence of the Binder ratio gSG (left)
and of the dimensionless correlation length ξSG(L)/L (right) for the spin. As can be seen from
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Figure 1. The temperature and size dependence of the spin Binder ratio (left) and of the
dimensionless spin correlation length (right) for σ = 1.1.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

g C
G

T

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T

L=64
L=128
L=256
L=512

L=1024

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T
-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.03  0.04  0.05  0.06  0.07  0.08

g C
G

T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ξ C
G
/L

T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ξ C
G
/L

T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ξ C
G
/L

T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ξ C
G
/L

T

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ξ C
G
/L

T

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

L= 64
L= 128
L= 256
L= 512
L=1024

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.03  0.035  0.04  0.045  0.05  0.055  0.06

ξ C
G
/L

T

(64,128,256)

(256,512)

(512,1024)

Figure 2. The temperature and size dependence of the chirality Binder ratio (left) and of the
dimensionless chirality correlation length (right) for σ = 1.1.

the figure, the spin Binder ratio decreases with increasing L, indicating the absence of a finite-
temperature SG order. This is consistent with the result of analytical calculations showing
TSG = 0 for σ > 1 [15–17].

By contrast, the behaviour of the dimensionless correlation length points to the opposite
at first glance, i.e., the data for different L appear to cross at a finite temperature T 	 0.05,
suggesting the occurrence of a finite-temperature SG transition: see the main panel. A closer
inspection of the data, however, has revealed that, although such a crossing indeed occurs at
an almost size-independent temperature for smaller sizes L � 256, the crossing temperature
rapidly shifts toward lower temperatures for larger sizes L � 512: see the inset. Such a
behaviour is fully consistent with spin–chirality decoupling occurring beyond the crossover
length scale L∗ 	 500. Hence, the asymptotic behaviour of the spin correlation length is
eventually consistent with that of the Binder ratio and with the known analytical result.

Next, we turn to the chirality ordering. In figure 2, we show the size and temperature
dependence of the Binder ratio gCG (left) and of the dimensionless correlation length ξCG(L)/L
(right) of the chirality for the case of σ = 1.1. As can be seen from the figure, the
Binder ratio exhibits a negative dip at a finite temperature T = Tdip(L). The temperature
Tdip(∞) is expected to give a chiral-glass transition temperature, which is estimated to be
TCG 	 0.05. This suggests the occurrence of a finite-temperature chiral-glass (CG) transition.
The dimensionless chirality correlation length exhibits a behaviour similar to that of the spin
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correlation length, at least for the sizes L � 512. In sharp contrast to the spin correlation length,
however, the crossing temperature between our two largest sizes L = 512 and L = 1024 now
shifts toward a higher temperature as compared with the one between L = 256 and L = 512,
suggesting the occurrence of a finite-temperature CG transition at TCG 	 0.05, consistently
with the estimate based on the chirality Binder ratio. Note that the occurrence of a finite-
temperature chiral-glass transition at σ = 1.1 does not contradict any known analytical result
on this model.

The combined data for the spin and for the chirality give a fairly strong numerical support
for the occurrence of spin–chirality decoupling in the present model, i.e., TCG 	 0.05 and
TSG = 0. This decoupling becomes clear only after studying larger lattices L � 500, suggesting
that the crossover length scale in this model might be rather large, L∗ 	 500, presumably
reflecting the long-range nature of the interaction.

4. Summary and discussion

By numerically investigating the spin and the chirality orderings of the one-dimensional
Heisenberg SG with the long-range power-law interaction for the case of σ = 1.1, we observed
a strong numerical evidence that the CG transition occurs at a finite temperature while the
standard SG transition occurs only at zero temperature, i.e., the occurrence of spin–chirality
decoupling. If one believes the σ–d analogy, our present observation may give some support to
the occurrence of spin–chirality decoupling in the original three-dimensional Heisenberg SG.

We wish to emphasize again that spin–chirality decoupling has become preeminent when
one studies larger systems. This is particularly so when one looks at the correlation lengths:
remember that the data of correlation lengths for smaller lattices L � 500 spuriously suggested
the occurrence of a simultaneous spin and chiral transition at a finite temperature, i.e., the
absence of spin–chirality decoupling, which, however, contradicted the analytical result on this
model. Namely, if at σ = 1.1 there were a simultaneous spin and chiral transition at a finite-
temperature without spin–chirality decoupling, the standard renormalization group analysis
should apply, inevitably yielding the exponent relation ηSG = 2 − σ = 0.9. Since the SG
correlation function at finite TSG decays with distance r as r−(η−1), however, this leads to an
immediate contradiction. Therefore, a simultaneous spin and chiral transition without spin–
chirality decoupling as apparently suggested from the correlation-length data for smaller sizes
L � 500 is not allowed at σ = 1.1.

It is also a bit surprising that the spin Binder ratio and the normalized spin correlation
length exhibit quite different behaviours for moderate lattice sizes L � 500. While the absence
of the standard SG order is already evident in the spin Binder ratio from rather small lattices, it
becomes appreciable in the corresponding spin correlation length only for larger lattices, say,
L � 500. In this connection, it is sometimes mentioned in the literature that the correlation
length might be the best quantity to look at in the study of phase transition, being superior
to, for example, the Binder ratio [7]. However, our result indicates that this is not always the
case: in the present occasion, on the contrary, the Binder ratio is a better quantity than the
correlation length, at least for moderate lattice sizes. Of course, both quantities have given the
same conclusion for large enough lattices, as should be the case.
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